ACTIVITY 17-1
BULLET TRAJECTORY

Objective:
By the end of this activity, you will be able to:
1. Analyze three different crime scenes.
2. Determine information about the shooter’s position.

Time Required to Complete Activity: 40 minutes (teams of two students)

Introduction:

The device pictured below is a model representing three different bullet trajectories that will be used in the three scenarios in this activity.

The angle of impact (the bullet’s path) is the angle created by the pathway of the bullet and the horizon. To determine this angle, at least two points along the trajectory path must be identified. These two points could be an entry wound (A) and exit wound (B) or possibly a windshield penetration (A) before entering the body (B). By identifying the location of the shooter, we may be able to collect additional evidence to help identify the firearm.
Recall the Law of Tangents. This law states that:
\[\tan \text{ of an angle of elevation} = \frac{\text{Opposite side (B)}}{\text{Adjacent side (A)}} \]

If the distance from the wound to side A can be measured, side B can be calculated.
If the angle of elevation and side A can be measured, then it is possible to calculate side B.

Materials:
- ruler
- calculators with sine function or tangent table

Safety Precautions:
None

Scenario 1:
A victim was shot from a bullet that came through his front car window as shown in figure below. Witnesses saw a muzzle flash from a nearby building, but were unsure from which floor the flash originated. The path of trajectory can be determined by using Point 1 (P1), the broken windshield, and Point 2 (P2), the point where the bullet entered the victim’s head.

Procedure: Part A
1. According to the sketch the angle of trajectory is 2 degrees.
2. The distance to the building in question is 40 feet.
3. Calculate the height of the shooter using the Law of Tangents.
 Height of gun = Height above horizon + distance to ground
 The window (P1) and the point of head penetration (P2) provide two points used to determine the angle of the shooter’s position above the driver’s location.

![Diagram of scenario 1](image-url)
Using a Trajectory Model to Simulate the Crime Scene

To simulate the crime, this method uses a protractor, some thread or dental floss, and a washer or some other weight. The path was right to left. The angle appears to be about 2 degrees from 90. This translates to 2 degrees above the horizon (upward to the right). The bullet therefore moved in a downward direction about 2 degrees from the gun through the window to the victim from right to left and downward.

A second method of determining the height of the shooter uses a laser pointer as pictured on the right. A laser pointer can be projected toward the location of the shooter and may assist in determining the shooter’s position. Neither method is perfectly accurate, but both will give a fair approximation.

Calculation Position Using the Law of Tangents

Distance to building = 40 feet

angle of elevation (–) = 2

Solving using the Law of Tangents:

Tan of angle of elevation = opposite/adjacent
Tan – = opposite side/adjacent side
Tan of 2° = b (height of building above wound or above the horizon) / a Distance to the building (40 ft)

.035 = x
40 ft

x = 1.34 ft above the head wound

Total height of shooter = height above the head wound + distance from head wound to ground

Shooter height = 1.34 ft + 4 ft = 5.34 ft

The shooter was located on the first floor.

Scenario 2:

Refer to the figure at the beginning of the activity.

Witnesses saw a victim fall while riding his bike. He had been struck in the head by a bullet. When the crime-scene investigators arrived, they calculated the angle of elevation of the shooter to be about 6.5 degrees. The distance to the building from which the bullet was fired was 152 feet, and the height of the entry wound on the victim while on his bike measured 6 feet above the ground.
Solve for height using the tangent method. Show your work.
Height = ______feet

Scenario 3:

Part A:
A man is shot from a hotel window while sitting on the hood of his car. Use the following information to determine from which window the shot came. The trajectory angle is 25 degrees.

At what distance above the ground was the shot fired? Show your work. This will help locate the correct floor.

Part B:
Using the diagram at the top of the next page, determine the correct window.
The bullet was fired from which window?
Draw lines illustrating how you arrived at your conclusion.

Final Analysis:

1. List problems that might interfere with the accuracy of your results.
 a.
 b.
 c.

2. What problems would be encountered if we couldn’t accurately determine the trajectory angle?
 a.
 b.

Solve the following:

3. Angle of entry (trajectory) = 15° and the distance to the building is 700 feet
 Height of shooter ~__________ feet (above the horizon since the person could be sitting or standing and not be at ground level)

4. Angle of entry (trajectory) = 27° and the distance to the building is 60 feet
 Height of shooter ~__________ feet above the horizon

5. Angle of entry (trajectory) = 35° and the distance to the building is 85 feet
 Height of shooter ~__________ feet above the horizon
ACTIVITY 17-2
FIRING PIN MATCH

Objectives:
By the end of this activity, you will be able to:
Compare firing pin impressions from different sources.

Time Required to Complete Activity:
20 minutes

Introduction:
When cartridge shell casings are recovered from a crime scene, they are
photographed and compared to NIBIS records to determine if these casings
match any found at previously committed crimes. This allows investigators to
link a series of crimes to the same perpetrator. Shell casings can demonstrate
certain identifying markings, such as ejector marks, breech marks, and firing
pin impressions. In this activity, you will compare the firing pin impressions.
Your comparison should include:
• Caliber of the cartridge
• Headstamp marking of the manufacturer
• Location of the firing pin strike
• Description of the unique firing pin characteristics

Materials:
(per student working in pairs)
pencil
lab sheet of firing pin photographs
hand lens
stereomicroscope (optional)

Safety Precautions:
None

Scenario:
Three suspects were apprehended and accused of robbery. Empty shell
casings were found at two different crime scenes during the past month.
They are labeled A through L. Police test-fired firearms belonging to the
suspects and compared firing pin impression marks made by those found
on crime-scene casings.

Procedure:
1. View each shell casing with a hand lens or stereomicroscope to
determine each of the following: the caliber, headstamp, location of
firing pin strike (center or rim), and description of firing pin marks.
Record your data on Data Table 1.
2. Using a pen or pencil, circle or mark the unique patterns on each casing.
3. Using the three cartridge casings from the three suspects and your infor-
mation from Data Table 1, determine if any of the crime-scene casings
match casings from the suspects.
Cartridge shell casings made from test firing guns from the three suspects.

Data Table: Comparison of casings

<table>
<thead>
<tr>
<th></th>
<th>Suspect 1</th>
<th>Suspect 2</th>
<th>Suspect 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caliber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headstamp marking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firing pin strike (center or rim)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description of mark</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence cartridge shell casings recovered from previous robberies.

Final Analysis:
1. Of the three suspects, which one(s) could you link to the crimes?
2. Based on the shell-casing matches, which of the three suspects could not be linked?
3. Describe specific (unique) characteristics that linked one of the suspect’s casings to the crime-scene casings.
4. If you were a prosecuting attorney, what argument could you provide to the defense’s claim that “if a suspect’s cartridge shell casings were not found at a crime scene, he must be innocent”?
5. Crime labs today are better able to compare and analyze ballistic evidence. Describe two advances in technology that have enabled a better use of ballistics evidence in solving crime.

Further Study:
Research the Washington, D.C. sniper case mentioned at the beginning of the chapter. Explain how ballistics evidence was used to link the two suspects to the serial killings.